Asymptotically exact spectral estimates for left triangular matrices

نویسنده

  • Michael Blank
چکیده

For a family of n ∗ n left triangular matrices with binary entries we derive asymptotically exact (as n → ∞) representation for the complete eigenvalues-eigenvectors problem. In particular we show that the dependence of all eigenvalues on n is asymptotically linear for large n. A similar result is obtained for more general (with specially scaled entries) left triangular matrices as well. As an application we study ergodic properties of a family of chaotic maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra

In this paper, we discuss some properties of joint spectral {radius(jsr)} and  generalized spectral radius(gsr)  for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but  some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...

متن کامل

Estimates for moments of random matrices with Gaussian elements

We describe an elementary method to get non-asymptotic estimates for the moments of Hermitian random matrices whose elements are Gaussian independent random variables. We derive a system of recurrent relations for the moments and the covariance terms and develop a triangular scheme to prove the recurrent estimates. The estimates we obtain are asymptotically exact in the sense that they give exa...

متن کامل

Developments in Preconditioned Iterative Methods with Application to Glacial Isostatic Adjustment Mo- dels

This study examines the block lower-triangular preconditioner with element-wise Schur complement as the lower diagonal block applied on matrices arising from an application in geophysics. The element-wise Schur complement is a special approximation of the exact Schur complement that can be constructed in the finite element framework. The preconditioner, the exact Schur complement and the elemen...

متن کامل

Spectral Analysis of (Sequences of) Graph Matrices

We study the extreme singular values of incidence graph matrices, obtaining lower and upper estimates that are asymptotically tight. This analysis is then used for obtaining estimates on the spectral condition number of some weighted graph matrices. A short discussion on possible preconditioning strategies within interior-point methods for network flow problems is also included.

متن کامل

Numerical Range for Random Matrices

We analyze the numerical range of high-dimensional random matrices, obtaining limit results and corresponding quantitative estimates in the non-limit case. For a large class of random matrices their numerical range is shown to converge to a disc. In particular, numerical range of complex Ginibre matrix almost surely converges to the disk of radius √ 2. Since the spectrum of non-hermitian random...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000